Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Diagnostics (Basel) ; 13(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2300214

ABSTRACT

Thrombotic microangiopathy can present itself in the form of several clinical entities, representing a real challenge for diagnosis and treatment in pediatric practice. Our article aims to explore the evolution of two rare cases of pediatric thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS) with extremely similar clinical pictures, which, coincidentally, presented at approximately the same time in our hospital. These cases and our literature review demonstrate the multiple facets of thrombotic microangiopathy, which can produce various determinations and salient manifestations even among the pediatric population. TTP and aHUS may represent genuine diagnostic pitfalls through the overlap of their clinical and biological findings, although they develop through fundamentally different mechanisms that require different therapeutic approaches. As a novelty, we underline that COVID-19 infection cannot be excluded as potential trigger for TTP and aHUS in our patients and we predict that other reports of such an association will follow, raising a complex question of COVID-19's implication in the occurrence and evolution of thrombotic microangiopathies. On this matter, we conducted literature research that resulted in 15 cases of COVID-19 pediatric infections associated with either TTP or aHUS. Taking into consideration the morbidity associated with TTP and aHUS, an elaborate differential diagnosis and prompt intervention are of the essence.

2.
Transfusion Medicine & Hemotherapy ; : 1-5, 2023.
Article in English | Academic Search Complete | ID: covidwho-2247466

ABSTRACT

Introduction: Bone marrow necrosis is a rare entity that can develop in context of a sickle cell disease vaso-occlusive crisis. Its physiopathology is related to an endothelial dysfunction taking place in bone marrow microvasculature. Case Presentation: A 30-year-old patient with history of compound heterozygous sickle cell disease was admitted following SARS-CoV-2 infection with fever and diarrhea. After initial favorable evolution, he developed a severe vaso-occlusive crisis with intense hemolysis and multi-organ ischemic complications. Patient then developed high fever and hypoxemia. With the suspicion of acute thoracic syndrome, a red blood cell exchange was performed. Respiratory symptoms ceased but patient persisted febrile with very high levels of acute phase reactants, persistent pancytopenia, and leucoerythroblastic reaction. An infectious cause was ruled out. Afterward, bone marrow aspiration and bone marrow biopsy showed a picture of bone marrow necrosis, which is an extremely rare complication of vaso-occlusive crisis but, paradoxically, more frequent in milder heterozygote cases of sickle cell disease. Ultimately, large deposits of complement membrane attack complex (particles C5b-9) were demonstrated after incubation of laboratory endothelial cells with activated plasma from the patient. Discussion: The clinical presentation and findings are consistent with a case of bone marrow necrosis. In this setting, the demonstration of complement as a potential cause of the endothelial dysfunction mimics the pattern of atypical hemolytic uremic syndrome and other microangiopathic anemias. This dysregulation may be a potential therapeutic target for new complement activation blockers. [ FROM AUTHOR] Copyright of Transfusion Medicine & Hemotherapy is the property of Karger AG and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2283680

ABSTRACT

Hemolytic uremic syndrome (HUS) is classically described as a triad of nonimmune hemolytic anemia, thrombocytopenia, and acute kidney injury. Atypical HUS (aHUS) is a rare variant of the disease, and it accounts for 5-10% of the cases. It has a poor prognosis, with a mortality rate exceeding 25% and a more than 50% chance of progressing into end-stage kidney disease (ESKD). Genetic or acquired dysregulation of the alternative complement pathway is highly implicated in the pathogenesis of aHUS. Multiple triggers for aHUS have been described in the literature, including pregnancy, transplantation, vaccination, and viral infections. Herein, we report a case of a previously healthy 38-year-old male who developed microangiopathic hemolytic anemia and severe kidney impairment one week after receiving the first dose of AstraZeneca SARS-CoV-2 vaccine. A diagnosis of aHUS was made after excluding other causes of thrombotic microangiopathies. Treatment with plasma exchange, prednisone, and rituximab (375 mg/m2) once weekly for four doses resulted in improvement of his hematological parameters. However, he progressed to ESKD.

5.
Am J Kidney Dis ; 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2255266

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a subtype of thrombotic microangiopathy (TMA) characterized by a dysregulation of the alternative complement pathway. Here, we report a previously healthy 38-year-old woman in whom aHUS developed after a COVID-19 vaccine booster. One day after receipt of a booster dose of mRNA-1273 vaccine, she felt ill. Because of persistent headache, nausea, and general malaise, she went to her general practitioner, who referred her to the hospital after detecting hypertension and acute kidney injury. A diagnosis of TMA was made. Her treatment consisted of blood pressure control, hemodialysis, plasma exchange, and respiratory support. Kidney biopsy confirmed the diagnosis of acute TMA. The patient was referred for treatment with eculizumab, and kidney function improved after initiation of this therapy. Genetic analysis revealed a pathogenic C3 variant. SARS-CoV-2 infection as a trigger for complement activation and development of aHUS has been described previously. In addition, there is one reported case of aHUS occurring after receipt of the adenovirus-based COVID-19 vaccine ChAdOx1 nCoV-19, but, to our knowledge, this is the first case of aHUS occurring after a booster dose of an mRNA COVID-19 vaccine in a patient with an underlying pathogenic variant in complement C3. Given the time frame, we hypothesize that the vaccine probably was the trigger for development of aHUS in this patient.

6.
Front Cardiovasc Med ; 9: 1108666, 2022.
Article in English | MEDLINE | ID: covidwho-2239314

ABSTRACT

Malignant hypertension (MH) is characterized by severe hypertension (usually grade 3) associated with fundoscopic changes (flame hemorrhages and/or papilledema), microangiopathy and disseminated intravascular coagulation. In addition encephalopathy, acute heart failure and acute deterioration in renal function may be present. The term "malignant" reflects the very poor prognosis for this condition if untreated. When severe hypertension is associated with hypertension-mediated organ damage (HMOD) a life-threatening situation that requires immediate but careful intervention occurs (hypertensive emergency). In the last few years an increase in the number of patients with malignant hypertension has been observed, especially among those patients with black ethnicity. Limited access to treatment and the poor adherence to anti-hypertensive therapy may contribute to the development of hypertensive emergencies. It is considered appropriate to study patients in order to rule out thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. In fact, the microvascular damage caused by malignant hypertension can favor intravascular hemolysis like Thrombotic Microangiopathies (TMs). TMs may present in three different clinical conditions: typical hemolytic uremic syndrome (HUS), atypical hemolytic uremic syndrome (aHUS) and thrombotic thrombocytopenic purpura (TTP). TMs can arise in the context of other pathological processes, including malignant hypertension.

7.
IDCases ; 31: e01692, 2023.
Article in English | MEDLINE | ID: covidwho-2230458

ABSTRACT

Thrombotic microangiopathy defines a group of pathologies characterized by microvascular dysfunction with the concurrence of microangiopathic hemolytic anemia, thrombocytopenia, and organ damage. It represents the most frequent microvascular manifestation of human immunodeficiency virus (HIV) infection. We report the case of a man in the seventh decade of life with a recent diagnosis of infection by HIV, who develops hemolytic uremic syndrome, requiring continuous renal replacement therapy and plasma replacement therapy, without response, ADAMTS13 with preserved activity, ruling out other etiologies (infectious, metabolic, and genetic) with successful response to eculizumab.

9.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: covidwho-2065505

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
10.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2043777

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to clinically significant multisystem disorders that also affect the kidney. According to recent data, renal injury in the form of thrombotic microangiopathy (TMA) in native kidneys ranks third in frequency. Our review of global literature revealed 46 cases of TMA in association with COVID-19. Among identified cases, 18 patients presented as thrombotic thrombocytopenic purpura (TTP) and 28 cases presented as atypical hemolytic uremic syndrome (aHUS). Altogether, seven patients with aHUS had previously proven pathogenic or likely pathogenic genetic complement abnormalities. TMA occurred at the time of viremia or even after viral clearance. Infection with COVID-19 resulted in almost no or only mild respiratory symptoms in the majority of patients, while digestive symptoms occurred in almost one-third of patients. Regarding the clinical presentation of COVID-19-associated TMA, the cases showed no major deviations from the known presentation. Patients with TTP were treated with plasma exchange (88.9%) or fresh frozen plasma (11.1%), corticosteroids (88.9%), rituximab (38.9%), and caplacizumab (11.1%). Furthermore, 53.6% of patients with aHUS underwent plasma exchange with or without steroid as initial therapy, and 57.1% of patients received a C5 complement inhibitor. Mortality in the studied cohort was 16.7% for patients with TTP and 10.7% for patients with aHUS. The exact role of COVID-19 in the setting of COVID-19-associated TMA remains unclear. COVID-19 likely represents a second hit of aHUS or TTP that manifests in genetically predisposed individuals. Early identification of the TMA subtype and appropriate prompt and specific treatment could lead to good outcomes comparable to survival and recovery statistics for TMA of all causes.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Purpura, Thrombotic Thrombocytopenic , Thrombotic Microangiopathies , Atypical Hemolytic Uremic Syndrome/etiology , COVID-19/complications , Complement Inactivating Agents , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/therapy , Rituximab , Steroids , Thiamine , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology
11.
Rinsho Ketsueki ; 63(3): 224-228, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1780264

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a lethal disease resulting in systemic thrombotic microangiopathies due to complement dysregulation. Immune activation by viral infections, such as SARS-CoV-2, may trigger hemolytic attack. A 38-year-old man, who had been previously diagnosed with aHUS due to complement component 3 mutation, was proven to be positive for SARS-CoV-2 without respiratory symptoms. No specific intervention was given to the patient, and he developed hematuria and oliguria three days after diagnosis. The patient was subsequently referred to our hospital and treated with eculizumab (900 mg). Afterward, the hemolytic symptoms improved rapidly. To the best of our knowledge, there have been reports of at least ten cases of hemolysis triggered by COVID-19 in patients with aHUS, and a potential clinical benefit of eculizumab for hemolytic attack, as well as for COVID-19, has been suggested. Here, we report the findings of a case, which indicate the efficacy of eculizumab introduction at an early stage.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Thrombotic Microangiopathies , Adult , Atypical Hemolytic Uremic Syndrome/diagnosis , COVID-19/complications , Hemolysis , Humans , Male , SARS-CoV-2 , Thrombotic Microangiopathies/diagnosis
12.
J Med Case Rep ; 15(1): 587, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1571927

ABSTRACT

BACKGROUND: Atypical hemolytic uremic syndrome is an exceedingly rare thrombotic microangiopathy caused by accelerated activation of the alternative complement pathway. CASE PRESENTATION: Here, we report two cases of patients presenting with suspected atypical hemolytic uremic syndrome precipitated by coronavirus disease 2019 infection. The first patient, a 25-year-old Hispanic male, had one prior episode of thrombotic microangiopathy presumed to be atypical hemolytic uremic syndrome precipitated by influenza A, and re-presented with thrombocytopenia, microangiopathic hemolytic anemia, nonoliguric renal failure, and normal ADAMTS13 activity, with confirmed coronavirus disease 2019 positivity. The second patient, a 31-year-old Caucasian female, had no personal history of thrombotic microangiopathy, though reported a family history of suspected atypical hemolytic uremic syndrome. She presented with similar laboratory derangements, oliguric renal failure requiring hemodialysis, and confirmed coronavirus disease 2019 positivity. Both patients were treated with eculizumab with complete resolution of their hematologic and renal complications. CONCLUSION: To our knowledge, this represents the largest case series of atypical hemolytic uremic syndrome precipitated by coronavirus disease 2019 in adults.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Purpura, Thrombotic Thrombocytopenic , Thrombotic Microangiopathies , Adult , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/drug therapy , Female , Humans , Male , SARS-CoV-2
13.
Nephron ; 146(2): 197-202, 2022.
Article in English | MEDLINE | ID: covidwho-1528608

ABSTRACT

SARS-CoV-2 causes thrombotic microangiopathy (TMA) through the activation of an alternative and lectin complement pathway. TMA is one of the main reasons for acute kidney injury development in patients with COVID-19. In this study, we present 3 TMA cases with severe kidney injury triggered by SARS-CoV-2. In the absence of other TMA causes, we diagnosed the atypical hemolytic uremic syndrome, triggered by SARS-CoV-2 due to abnormal complement activation. Because of both coagulation factors activation, and the high level of D-dimer in patients with COVID-19, it is crucial to differentiate disseminated intravascular coagulation from TMA. The use of anticomplement therapies such as eculizumab should be considered in refractory cases of progressive COVID-19. Controlled clinical trials are required before a definitive statement can be made.


Subject(s)
COVID-19/complications , Thrombotic Microangiopathies/etiology , Adult , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/virology , Complement Inactivating Agents/therapeutic use , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Thrombotic Microangiopathies/drug therapy
14.
Nephron ; 146(2): 185-189, 2022.
Article in English | MEDLINE | ID: covidwho-1495753

ABSTRACT

Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) affecting the kidneys. Compared with typical HUS due to an infection from shiga toxin-producing Escherichia coli, atypical HUS involves a genetic or acquired dysregulation of the complement alternative pathway. In the presence of a mutation in a complement gene, a second trigger is often necessary for the development of the disease. We report a case of a 54-year-old female, with a past medical history of pulmonary tuberculosis, who was admitted to the emergency service with general malaise and reduction in urine output, 5 days after vaccination with ChAdOx1 nCoV-19. Laboratory results revealed microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Given the clinical picture of TMA, plasma exchange (PEX) was immediately started, along with hemodialysis. Complementary laboratory workup for TMA excluded thrombotic thrombocytopenic purpura and secondary causes. Complement study revealed normal levels of factors H, B, and I, normal activity of the alternate pathway, and absence of anti-factor H antibodies. Genetic study of complement did not show pathogenic variants in the 12 genes analyzed, but revealed a deletion in gene CFHR3/CFHR1 in homozygosity. Our patient completed 10 sessions of PEX, followed by eculizumab, with both clinical and laboratorial improvement. Actually, given the short time lapse between vaccination with ChAdOx1 nCoV-19 and the clinical manifestations, we believe that vaccine was the trigger for the presentation of aHUS in this particular case.


Subject(s)
Atypical Hemolytic Uremic Syndrome/etiology , Blood Proteins/genetics , ChAdOx1 nCoV-19/adverse effects , Complement C3b Inactivator Proteins/genetics , Gene Deletion , Homozygote , Female , Humans , Middle Aged
15.
Front Immunol ; 11: 604759, 2020.
Article in English | MEDLINE | ID: covidwho-1389169

ABSTRACT

Objective: To first describe and estimate the potential pathogenic role of Ig4 autoantibodies in complement-mediated thrombotic microangiopathy (TMA) in a patient with IgG4-related disease (IgG4-RD). Methods: This study is a case report presenting a retrospective review of the patient's medical chart. Plasma complement C3 and C4 levels, immunoglobulin isotypes and subclasses were determined by nephelometry, the complement pathways' activity (CH50, AP50, MBL) using WIESLAB® Complement System assays. Human complement factor H levels, anti-complement factor H auto-antibodies were analyzed by ELISA, using HRP-labeled secondary antibodies specific for human IgG, IgG4, and IgA, respectively. Genetic analyses were performed by exome sequencing of 14 gens implicated in complement disorders, as well as multiplex ligation-dependent probe amplification looking specifically for CFH, CFHR1-2-3, and 5. Results: Our brief report presents the first case of IgG4-RD with complement-mediated TMA originating from both pathogenic CFHR 1 and CFHR 4 genes deletions, and inhibitory anti-complement factor H autoantibodies of the IgG4 subclass. Remission was achieved with plasmaphereses, corticosteroids, and cyclophosphamide. Following remission, the patient was diagnosed with lymphocytic meningitis and SARS-CoV-2 pneumonia with an uneventful recovery. Conclusion: IgG4-RD can be associated with pathogenic IgG4 autoantibodies. Genetic predisposition such as CFHR1 and CFHR4 gene deletions enhance the susceptibility to the formation of inhibitory anti-Factor H IgG4 antibodies.


Subject(s)
Apolipoproteins/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Autoantibodies/immunology , Complement C3b Inactivator Proteins/genetics , Complement Factor H/immunology , Immunoglobulin G4-Related Disease/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Deletion , Genetic Predisposition to Disease/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/pathology , Middle Aged , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL